Criteria for Polynomial Time

(Conceptual) Clustering

Leonard Pitt Robert E. Reinke

(pitt@a.cs.uiuc.edu) (reinke@uicsl.csl.uiuc.edu)

Department of Computer Science
University of Illinois at Urbana-Champaign
1304 W. Springfield Ave.

Urbana, IL 61801 USA.

Running head: Polynomial Time Clustering Criteria

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
APR 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Criteriafor Polynomial Time (Conceptual) Clustering £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Illinois at Urbana-Champaign,Department of Computer REPORT NUMBER
Science, 1304 W. Springfield Avenue,Urbana,l L ,61801

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 31
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Research in cluster analysis has resulted in a large number of algorithms and similarity
measurements for clustering scientific data. Machine learning researchers have published a
number of methods for conceptual clustering, in which observations are grouped into clusters
which have “good” descriptions in some language. We investigate the general properties
which similarity metrics, objective functions, and concept description languages must have
to guarantee that a (conceptual) clustering problem is polynomial time solvable by a simple
and widely-used clustering technique, the agglomerative-hierarchical algorithm. We show
that under fairly general conditions, the agglomerative-hierarchical method may be used to

find an optimal solution in polynomial time.

Keywords: Cluster Analysis, Conceptual Clustering, Analysis of Algorithms.

1 Introduction

There is a wide body of literature in several fields concerned with the clustering problem.
Roughly, this is the problem of how to group observations into categories such that members
of a category are alike in some interesting way and members of different categories are
different. Within artificial intelligence and machine learning, the clustering problem has
been classified as part of the general problem of learning from observation and discovery
(Carbonell, Michalski, & Mitchell, 1983).

Much of the work on the clustering problem has involved numerical or statistical tech-
niques for clustering scientific data. Researchers in cluster analysis and numerical tazonomy
have focussed on developing appropriate metrics for measuring similarity between points and
clusters (groups of points), and on developing algorithms to minimize inter-cluster similarity
as measured by some objective function. The literature on these techniques is scattered
through journals in statistics, pattern recognition, computer science, and various fields of
application (biology, psychology, sociology, etc.). Summaries may be found in (Anderberg,
1973; Hartigan, 1975; Duda & Hart, 1973), and more recently (Romesburg, 1984).

In machine learning, work on the clustering problem has focussed on the notion of concep-
tual clustering, introduced by Michalski (1980). Conceptual clustering methods attempt not
only to produce “good” classifications based on some metric, but also to find a meaningful
description of the classification. In contrast, cluster analysis techniques leave it to the human
analyst to determine the meaning of a clustering (here, and throughout the remainder of
the paper, we use the term “cluster analysis” to refer to all clustering techniques in which
the quality of cluster descriptions is not a factor in measuring the quality of the clustering).
Researchers in conceptual clustering have not only produced a number of algorithms and
metrics (e.g., Lebowitz, 1983; Michalski & Stepp, 1983; Fisher, 1985; Mogenson, 1987), but
have also investigated employing clustering in problem solving (Rendell, 1983; Fisher, 1987),
incorporating problem-specific knowledge into the clustering process (Mogenson, 1987; Stepp
& Michalski, 1986), and providing appropriate cluster description languages (Stepp, 1984;
Fisher, 1985). Fisher and Langley (1985) and Stepp (1987b) provide overviews of work on
conceptual clustering, and develop characterizations of the problem.

Instead of adding to the already large body of clustering algorithms and metrics, we

have explored the properties of a simple, general, and well-known clustering algorithm, the

agglomerative-hierarchical or amalgamative algorithm. In particular, we are interested in
characterizing the kinds of problems, metrics, objective functions and concept description
languages on which a given algorithm will succeed. We define success as the discovery of
an optimal clustering in time polynomial in the number of data points to be clustered.
Though introductory texts on cluster analysis sometimes attempt to explain how to choose
an appropriate algorithm and metric, there has not, to our knowledge, been any formal
exploration of the conditions under which particular algorithms are guaranteed to produce
optimal solutions in polynomial time (there are, of course, algorithms designed to produce
an optimal solution for particular metrics and objective functions). By specifying such
conditions, we hope to simplify the problem of choosing an appropriate clustering technique.

In the next section, we introduce a simple conceptual clustering problem, and use it to
motivate general definitions for clustering problems, distance metrics, and objective func-
tions. In Section 3, the example is used to introduce the agglomerative algorithm, and to
motivate some fairly general restrictions on conceptual clustering problems; in Section 4,
these restrictions are proved sufficient to guarantee that the algorithm finds an optimal solu-
tion. We also examine further properties of the agglomerative algorithm, as well as variations

of the restrictions of Section 3.

2 Definitions

We formally define a very general version of the clustering problem. The definitions are
similar in spirit to the definition of the Abstract Clustering Task given by Fisher and Langley
(1985). However, we want to more carefully specify what is meant by a “clustering quality
function.” We believe the definitions are general enough to subsume the objective functions
normally used in cluster analysis and conceptual clustering.

We motivate the definitions, and the properties of the next section, with the following
example of simplified conjunctive conceptal clustering (Michalski & Stepp, 1983), or mono-
maal clustering. The formal definition of the monomial clustering problem will be given in
Section 3.1.

For monomial clustering, the objects to be clustered are described with n boolean at-
tributes z, zs, ..., z,. Let X,, be the set of boolean vectors over the attributes z, zs, ..., z,.

Then the domain for the monomial clustering problem is X = {X,.}n>1.

Similarly, many other domains for clustering problems are best described as a parame-
terized family X = {X,,} of sets, where the parameter n is some appropriate value, typically
reflecting the “size” of an element. For example, if we are interested in clustering objects
in Euclidean space, then the domain X might be the collection {E,},>1, where E, is n-
dimensional Euclidean space.

For some domains X = {X,}, we may allow X,, to be empty for some (or most, if no
parameterization is desired) values of n. For example, if the only type of clustering problem
that we wish to consider is clustering in 2-dimensional Euclidean space, then we would let
X, = E,,and X; = () for 7 # 2.

The above considerations motivate the following
Definition 2.1 A domain X is a parameterized family of sets { X, }n>1.

Our definitions will require that a clustering algorithm work for all X, that are nonempty,
and that the algorithm have run-time polynomial in n.

In conceptual clustering, a cluster is described by a statement in some language, and
not by the set of points in the cluster. For example, for monomial clustering, clusters are
described by monomials over n boolean attributes. Let L, be the set of all monomials (pure

conjunctive concepts) over the boolean variables zq,z,,. .., Z,.

Definition 2.2 A clustering description language L is a parameterized family of languages

{Ln}nx1.

The parameter n typically reflects the size or length of statements in the language L,,.

Each statement ¢ € L,, is a cluster. The meaning of a cluster is given by an interpretation:

Definition 2.3 An interpretation Z = {I,}n>1 of a language L to a domain X is a param-

eterized family of functions I, : L, — 2%». (2%~ is the power set of X,.)

For each n, every cluster ¢ € L, describes a set of points of X,, given by I,(c).

For monomial clustering, the interpretation I,, of a monomial over the variables z;, s,
..., Zy is the standard logical one, i.e., the set of boolean vectors of length n (over the same
variables) that satisfy the monomial. For some applications, it is desirable to parameterize
the family of languages L differently than the domain X. For example, if the goal is to

cluster numerical data points based on their descriptions in a simple, limited language, then

for each n and m there would be an interpretation I, ,, : L, — 2%™. For the sake of clarity,
we will assume that the language and its domain have the same parameter n; the extensions
required for the two parameter case are straightforward.

A clustering C over L, is a finite set of statements (clusters) of L,,. The size of a clustering
C is the sum of the lengths of the statements in C'. Let K, denote the class of all clusterings
over L,. For monomials, a clustering is simply a finite collection of monomials.

A cluster ¢ covers a set S C X, iff S C I,(c). A clustering C' covers a set S C X, iff
S C Uecec In(c). The clustering C is a prime clustering of a set S iff C covers S and there is
not a proper subset C' C C such that C’ covers S. A prime clustering is therefore one that
contains no extraneous clusters.

The goal of clustering is to find, given a finite subset S C X, of elements, a (prime)
clustering that covers S (and possibly other elements of X,,) such that each cluster of the
clustering covers similar elements (i.e., is tight), and different clusters cover dissimilar ele-
ments (i.e., have large distance). The definitions of tightness and distance should depend
only on clusters, i.e., on statements in the cluster description language, and not on the
points covered by those clusters, thus fulfilling the primary condition of conceptual cluster-
ing (Michalski & Stepp, 1983; Fisher & Langley, 1985).

The tightness function will be parameterized by n in a manner similar to domains and
clustering description languages. Since the clustering algorithm must employ this function,
it is unreasonable to expect it to work for all n unless the tightness functions for each n
are related to the extent that there is a single algorithm for evaluating them. For the same

reason, the distance functions should be interrelated as well.

Definition 2.4 A family F = {F,}n>1 of functions is uniformly computable iff there is an
algorithm F such that for all n and z, F(n,z) = F,(z). A family is uniformly polynomial

time computable iff F' runs in time polynomial in the value of n and the size of .

The formal definition for tightness and distance functions are thus:

Definition 2.5 7 = {T,.}n>1 is a uniformly computable family of tightness functions, with

T, : K, — RT, where R™ denotes the nonegative real numbers.

Definition 2.6 D = {D,}.>1 s a uniformly computable family of distance functions, with
D, : K, — Rt.

T, is a measure of tightness of clusterings over the language L,. Note that 7, is a
function of clusterings, and not of individual clusters. For monomial clustering, a natural
measure of the tightness of a monomaal is simply the number of attributes appearing in the
monomial. A natural measure of overall tightness of a clustering (set of monomials) might
be the minimum tightness of any monomial of the set. We define this tightness function 7
for monomials in the next section.

D,, i1s a measure of distance of clusterings over the language L,. Note that D, is a
function of clusterings, not of pairs of clusters. In the next section, we define the distance
D,, of a monomial clustering to be the minimum number of literals on which any pair of
monomials of the clustering differ.

Numerical/statistical methods typically use a single metric that measures either similarity
or dissimilarity between points. The objective function measures the overall quality of a
clustering relative to that metric. For the sake of generality, we have assumed separate
similarity (tightness) and dissimilarity (distance) measures, and allow the objective function

(which we call “goodness”) to be a function of these.

Definition 2.7 G = {Gnh}.>1 is a uniformly computable family of goodness functions, with
G, : range(T,) x range(D,) — R*.

The goodness G,, of a clustering is a real number representing how well both tightness

of clusters and distance between clusters has been achieved. We extend the domain of G,
to K, with the natural interpretation that (VC € K,,) Gn(C) = Gn(Tn(C), Dn(C)). We are

now ready to define clustering problems.

Definition 2.8

e A (conceptual) clustering problem s any siz-tuple (X,L,Z,7T,D,G) with X,L,Z,T,D,
and G defined as above.

e Aninstance of a conceptual clustering problem (X,L,Z,T,D,G) is a seven-tuple (Xn, L, In, T, Dpn, G,
where X,, € X, L, € L, I, € Z, T, € T, D, € D, G, € G, and S is any finite
nonempty subset of X,,.

e The solution to an instance (Xn, Ln, In, Tn, Dpn, G, S) of a conceptual clustering prob-
lem is a clustering C € K,, (called a best clustering) such that

1. C is a prime clustering of S.

2. For all clusterings C' that satisfy 1. above, G,(C') < G,(C).

e An algorithm A solves the conceptual clustering problem (X,L,Z,T,D,G) iff for all n
such that X,, is nonempty, and for any finite nonempty set S C X,,, the algorithm A,
if given n and S as input, outputs a solution to the instance (Xn, Ln, In, Tn, Dn, Gn, S).
We also write that (X,L,Z,T,D,G) is solvable.

In what follows, the scope of the variable n will be all numbers such that X, is nonempty.
Thus the statement “for all n” is used to mean “for all n such that X,, is nonempty”.

Note that if X, is infinite, there may not exist a solution to (Xn, Ln, In, Tn, Dn, Gn, S)
because there may be an infinite sequence of clusterings for which G, increases without
bound. Also note that the solution (if it exists) of an instance of a clustering problem may
not induce a partition of the points of S; there is no requirement that the clusters of the
solution cover disjoint sets (of course, disjointness may be enforced by an appropriate choice
of G,,). Further, the clusters may cover (possibly an infinite number of) points of X,, — S.

These definitions, and results in the following sections, are easily applied to the case of
cluster analysis: The concept description language is simply finite subsets of X,,, and the
interpretations Z are identity functions I,,. Thus a cluster is simply a finite set of points of
Xn.

Since we are interested in feasible computations, we define polynomial time solvability of
clustering problems. Recall that the parameter n typically reflects a natural measure of size

or length of encoding of objects z € X,.

Definition 2.9 Let the families T, D, and G be uniformly polynomaal time computable. Then
(X,L,Z,T,D,G) is solvable in polynomial time f there is an algorithm A and polynomial
p such that

1. A solves the clustering problem (X,L,Z,T,D,G).

2. For any n (for which X, is nonempty), and any finite S C X,,, the run-time of A on
input n and S is at most p(n, |S|).

3 A Restricted Class of Clustering Problems

The definitions in Section 2 are so general that it would be ridiculous to expect that all
clustering problems are polynomially solvable (or even solvable, for that matter). A main goal
within our framework is to identify exactly those clustering problems that are (polynomially)
solvable, and to give algorithms for solving them. Only by restricting the class of domains
X, the languages £, and the objective functions 7, D, and G under consideration, can we
begin to make progress toward this goal. (As it turns out, we will not need to make any
restrictions whatsoever on the domains X'.)

A natural algorithm for clustering is the following: Given a set of elements S to be
clustered, begin by forming a cluster for each element of S. Then, iteratively, “merge” the
two clusters which are “closest”. Halt when there is only one cluster remaining (containing
all of the points of S), and output the best clustering encountered during this process. This
1s essentially the agglomerative algorithm formally specified in Section 4.

In Section 3.1 we illustrate the agglomerative algorithm using an instance of the monomial
clustering problem. In Section 3.2 the example is used to motivate properties for £, T, D,

and G that guarantee that the agglomerative algorithm finds an optimal solution.

3.1 An Example

The monomial clustering problem, discussed informally in the last section, is defined by:
o X = {X,}n>1, where X, is the set of vectors over the variable set z,,,, ..., Zn.

o L ={L,}n>1, where L, is the set of monomials over the same variables (cf., the single

representation trick (Cohen & Feigenbaum, 1983)).

o 7 = {I.}n>1, where I, is the standard logical interpretation, i.e., the interpretation of

a monomial is the set of boolean vectors that satisfy it.
o 7 ={Th}n>1, where, if C = {my, m,,...,my} is a clustering of L,

T.(C) = min {ta(mi)},

i=1,...,k

and t,, the tightness of a monomial, is the number of attributes (literals) in the mono-

mial.

¢ D ={D,}n>1, where, if C = {mi,m,,...,mp} is a clustering of Ly,

D,.(C) = min {dn.(mi,m;)},

1<i£j<k

and d,,, the distance between two monomials, is the number of attributes which appear
negated in one monomial and not negated in the other. If the clustering C has only

one monomial, arbitrarily define D,(C) = 0.
o G ={Gn}n>1, where, if C € K,, then G,,(C) = min{D,(C), T,.(C)}.

The above objective functions 7, D, and G capture the following three goals: (a) a tight
clustering should contain only monomials that cover few points (a difference of 1 in the value
of t,, corresponds to a factor of 2 in the number of points of X,, covered); (b) all monomials
found should be disjoint (a clustering C containing non-disjoint monomials m; and m, will
have D, (C) = 0, since d,(m1,my) = 0), and should differ on as many attributes as possible;
(c) a small value of T, or D, is equally undesirable, since the overall goal is to maximize the
minimum of the two measures.

To see how the agglomerative algorithm works on the monomial clustering problem, we
give a sample run using the instance (Xo, Lo, Io, To, Do, Gg, S), where the input set S

consist of the points (events) ey, ..., es as follows:

€1 = T1TL3T4T5LgL7TZTy

€9 = T1LoL3TH4T5LgL7LRLY
€3 = L1 LoL3L4T5LeL7L]LY
€4 = 5127253545556157278159
€y = L1 LoL3L4T5LeL7 LTy
For the rest of this section, we will refer to Xo, Lg, Iy, Tg, Do, Gg, tg, and dy as

X,L,I1,T,D,G, t, and d, respectively.

[Step 1]

The agglomerative algorithm begins with the clustering

Cr={m; =¢;:1<1i<5}.

Note that this clustering is as “specific” as possible, in that each cluster is contained
in some cluster of every monomial clustering that also covers S. The goodness of this
clustering is 2, since all monomials have ¢(m;) = 9, and the minimum distance (between the
pairs (m,m3), (m1,ms), (M2, m4), and (msz, ms)) is 2.

[Step 2]
The agglomerative algorithm chooses one of the minimally-distant pairs for merging.
Assume it picks the pair (m;,ms5). The obvious way to merge two monomials is to

simply drop the attributes on which they differ. This results in a new clustering

Cy = {m,...,m4} where:

my, = $1§2$3$4$55859

Mg = €9 = 5133253545515657158239

M3 = €3 = L1 LoL3L4L5LgL7LLY

My = €4 = T1L9LIL4L5LgL7LLy
The new cluster m; covers the events e; and e, as well as other points of X,,. Its tightness
tis 7, and the new minimum distance (between m; and mg) is 1. Therefore, the goodness of

the new clustering is also 1. Note that this is less than the goodness of the initial clustering;

the algorithm does not hill-climb on this objective function.

[Step 3]
The algorithm merges the monomials m; and ms. This results in a new clustering
C3 = {mi, mj, m3} where:
My = T1TaT3T4TeTg
M9 = €y = T1L9TIT4T5LgL7LgLg

mg = €4 = 51$253$4$5$6$7$8$9

[Step 4]
The minimum tightness is 6 (m;) and the minimum distance is 2 (between m; and

mg3). The algorithm therefore merges my and mg, resulting in Cy = {m, my} where:

my, = 2715221531545859

My = 51152535455&38229

This clustering has 7' = 6 and D = 6, so G = 6. This 1s, in fact, a best clustering of the

events under the given objective function.

[Step 5]
The last step in the example merges the two remaining clusters into a single monomial
to obtain the clustering Cs = {0} with with G(Cs) = T(Cs) = D(Cs) = 0. The
algorithm therefore keeps Cy as the best clustering.

3.2 Properties

In this section, we present some properties for clustering problems, using the example from
the previous section to provide intuitive motivations. For a clustering problem (X, L,Z,7T,D,G),
we state only the (more restrictive) properties sufficient for polynomial time solvability; corre-
sponding properties for general solvability are trivially obtained by dropping the polynomial
time requirements. In Section 4, we will prove that a clustering problem possessing the
properties is solvable in polynomial time because the agglomerative algorithm meets the
requirements of Definition 2.9.

In our example, the cluster description language and interpretation make it is easy to
determine whether a point z € X, is covered by a statement ¢ € L,,. The ability to determine
cluster membership is necessary if the agglomerative algorithm is to create prime clusterings
— the merging operation used in the agglomerative algorithm may produce a new cluster
whose interpretation is a superset of (the interpretation of) some cluster not involved in the
merge. To guarantee prime clusterings, we must be able to detect such extraneous clusters.
The first property therefore requires that we be able to determine cluster membership in

polynomial time.

Property P;: There exists a polynomial time algorithm such that when given as input any
number n, any point ¢ € X,,, and any cluster ¢ € L,, outputs “true” if z € I,(c), and

“false” otherwise.

The membership algorithm may be used to obtain a prime clustering from a given clus-

tering of a set S. In particular, let the polynomial time subroutine PRIME(n, C, S) return a

10

prime clustering C’ of S, where C' contains a subset of the clusters of C. PRIME iteratively
examines each cluster ¢ € C and adds it to C' iff there is some point z € S such that
z € I,(c) and C’ does not cover {z}.

The next property is based on step 1 of the example. In this step, the algorithm created
a single cluster for each point z; € S. Each cluster ¢; covered z; and as few additional points
of X as possible. For some languages L,, and some sets S, there may not exist a clustering of
individual points which is “most specific” in this sense. Property P, asserts that the cluster
description languages must be such that for any set of points in X,,, there must exist, and
there must exist feasible (polynomial) means for finding, a cluster (statement in L,,) that is

the most specific of any statement in L, covering those points.

Definition 3.1 For a given clustering problem (X,L,Z,7T,D,G), and any n, the maximally
specific cover (MSC) for a set of points P C X, is a cluster ¢ € L,, such that ¢ covers P,
and for any ¢’ € L,, if ¢ covers P, then I,(c) C I.(c).

Property P,: There exists an algorithm such that when given as input any number n and
finite S = {z1,2,,...2,} C X, outputs a clustering C = {c;,¢3,...,¢,} € K, such
that for 1 <7 < s, ¢; is an MSC for {z;}. The run-time of the algorithm must be

polynomial in n and |S].

Property P, implies that the descriptions {c;} of the maximally specific covers of the
singleton point sets be at most of size polynomial in the total size of S (otherwise, the
algorithm may spend exponential time just creating them).

The next two properties are based on the merging operation in the example. The agglom-
erative algorithm assumes that D(C) for a clustering is based on an inter-cluster distance

measure d:

Property P3;: There is a family of uniformly polynomial time computable functions d =

{d.}, where d,, : L, x L, — R", such that for all n, and C € K,,

(a) D,(C) = min{dn(ci,c;) : ci,c; € C, ¢ # ¢4}
When restricted to single-cluster clusterings, { D, } may be any family of uniformly

polynomial time computable functions satisfying (b) below.

11

(b) (Vei,ca,ca,¢ca € L) (In(e1) C In(c2)) and (In(es) C In(ca)) = du(er,c3) >
dn(Cg,C4).
If C; = {¢1} and Cy = {cp} are clusterings containing only single clusters, then

In(c1) € In(cs) = Dn(Ch) > Do(Ch).

Property P; requires that the distance D of a clustering really is the minimum inter-
cluster “distance” d between any pair of clusters, where d has a monotone property: If two
clusters have distance d, and points are then added to each, the distance d cannot increase.
In other words, as clusters “grow”, the distance between them shrinks, and D is the minimum
of all these inter-cluster distances.

It is not clear what is meant by the “distance” of a clustering C' when C' contains only
a single cluster. Generally, one is only interested in clusterings that contain more than one
cluster. A possible way to deal with this is to simply let the value of G be zero for any such
clustering, or to let the value of D be zero. For the sake of generality, we have chosen the
weakest requirement, which is to allow D to be defined arbitrarily for one-cluster clusterings,
but to require that D be monotone under generalization. Perhaps more natural, but also
more restrictive, would be to require that the value of D be the same for all one-cluster
clusterings, or to let G be defined as a function of 7'(C') alone when C has only one cluster.

In steps 2 — 4 of the example, the algorithm merged monomials in an obvious way
to produce new clusters. Also, the clusters produced by merging monomials were always
maximally specific covers (for the points covered by the merged clusters). Property Pj is
related to P,. It requires that we be able to generate, in polynomial time, an MSC for the

union of any two sets of points in the problem space described by clusters:

Property P,: There is an effective procedure M such that for any n, M “merges” any two
clusters ¢, ¢’ € L,,. For all n, M and L, must have the following properties:
(a) For all ¢, ¢’ € L,, there is an MSC ¢" for I,(c) U I,(c'), and M(n,c,c') = ¢".

(b) M runs in polynomial time, i.e., in time polynomial in n, and in the lengths of

the statements ¢ and ¢’

(¢) There is a polynomial ¢ such that for any finite subset S of X,,, if ¢ is obtained by

any (finite) number of merges of MSCs of subsets of S, then ¢ has size at most

q(n, [S]).

12

Part (c) assures that the following event does not occur: During a run of the agglom-
erative algorithm, clusters are “merged” successively. It is possible that at some point, the
description of a cluster is larger than some polynomial in the size of S. Any reasonable
restriction on the size of the statement M(n,c,c') in part (b) will not prevent this event
from occurring. For example, since there are at most |S| iterations, even if we require that
the length of the statement M(n,c,c’) is at most the sum of the lengths of the statements ¢
and ¢, it is possible that the final clustering obtained by the algorithm will have size expo-
nential in |S|. By requiring part (c) in addition to part (b), we guarantee that any statement
produced by the algorithm has size at most polynomial in the size of S.

In many cases (e.g., when clusters are conjunctive descriptions over any collection of
attributes), the size of descriptions will decrease as clusters become more general. In other
cases (e.g., axis-aligned rectangles in Euclidean spaces), description size will remain constant.
In cluster analysis, property P, is trivially satisfied, since merging is done by union (of sets
of points), and the largest statement is exactly S.

Property P; is based on the observation that, in the monomial example, clusters became

less cohesive (more general or less tight) as merges occurred. We need the following definition:

Definition 3.2 Given X,,, L,, and I, the relation <,, on K, is defined by: For all C,C' €
K,, C 2, C iff (Vee C)(I € C') I.(c) C I,(c). If C <,, C" we say C 1is less general than,
more specific than, and is a specialization of, C', and equivalently, that C' is more general
than, less specific than, and is a generalization of, C. When restricted to prime clusterings

with respect to a given set S, <,, is a partial order on K,,.

Property Ps: The tightness functions 7 = {7,} are a uniformly polynomial time com-
putable family of functions, and for all n, the function 7, is monotone nonincreasing

under generalization, i.e., for all C,C’ € K,, if C <,, C' then T,,(C) > T,,(C").

Property P; asserts that if one clustering is a generalization of another, then the more
general clustering is at most as tight as the less general. Because we have defined tightness as
a function of clusterings, and not of individual clusters, it is not immediately clear that this
is a natural property. Observe, however, that the definition of the relation <, states that
each cluster of the less general clustering is contained in some cluster of the more general
clustering. Thus if T, somehow depends on the “tightness” of particular clusters (e.g., if

tightness of individual clusters is inversely related to the quantity or variety of elements

13

covered), then the more general clustering contains clusters at most as tight as the clusters
of the less general clustering. We would then expect that the overall value of T;, would be
more for the less general clustering.

Finally, property P simply says that goodness has a very natural property: If you
increase either distance or tightness, while holding the other constant, then goodness should

not decrease. In other words, tight, distant clusterings are best.

Property Ps: The goodness functions G = {G,} are a uniformly polynomial time com-
putable family of functions, and for all n, the function G,, is monotone nondecreasing
in T, and D,. That is, if z; > z, € range(T,) and y; > y» € range(D,), then
Gn(z1,y1) > Gu(za2,y1) and Gu(z1,y1) > Gu(z1,92).

3.3 Example Clustering Problems

The properties P; through Pg hold for several interesting conceptual clustering and cluster
analysis problems that fall within our framework. In this section, we present some of these,

without proof that they do indeed satisfy the properties.

Monomials The properties P; — Ps were motivated by, and are natural generalizations of,
properties held by the monomial clustering problem. It is easily verified that these
properties are satisfied by the monomial clustering problem as defined in Section 3.1.
The properties also hold for conjunctive conceptual clustering using multiple-valued
attributes and internal disjunction (Michalski & Stepp, 1983).! In this case, the initial
clustering is as for monomials and the “refunion” operator (Michalski, 1983) can be
used for merging. Natural extensions of the distance and tightness measures in the
example satisfy P3 and P;, and these may be used with any objective function satisfying

Ps.

Geometric Another interesting group of languages which have these properties are some
geometric languages over Euclidean spaces. For example, the agglomerative algorithm

can solve the azis-aligned rectangle clustering problem, defined by:

o X = {X,}, where X,, is n-dimensional Euclidean space.

1Some of the metrics used by Michalski & Stepp, e.g., “simplicity” and “sparseness”, clearly do not satisfy
properties P3 and Ps.

14

o L ={L,}, where L, is the set of n-dimensional rectangles with sides parallel to

the n axes.

e 7 = {I,} is the standard interpretation: I,(r), where r is a rectangle of L,, is the

set of points of X,, that are contained in 7.
e 7 = {T,}, where T,,(C) for a collection of rectangles C' could be any of

1. The inverse of the area of the union of the rectangles of C.
2. The inverse of the area of the largest rectangle of C.

3. The inverse of the maximum distance between any two points within any

cluster, 1.e., the inverse of the length of the longest diagonal.

e D ={D,}, where D,(C) is the minimum pairwise “distance” d,, between any pair
of rectangles of C, and d,, is any metric that gets smaller as clusters grow. (Some
metrics d,, that do not have this property include d,(r1,72) = maximum distance

between any pair of points of ; and 74, or distance between the centers of r; and

ry.) Let D,,(C) = 0 if C has only one cluster.

e G ={G,} is any objective function satisfying Ps.

The critical condition for geometric languages is that there exist, and we can find, a
description of the smallest set representable in the language that covers a given set of
points. For example, if the language consists of descriptions of all convex polygons in
2-dimensional Euclidean space, then it is easy to see that the agglomerative algorithm
may be successfully applied, since the convex hull of a set of points (which may be
found in polynomial time) is contained in every convex polygon containing the points.
However, if £L = {L,}, where L, consists of descriptions of convex polytopes in n
dimensions (i.e., a list of (n — 1)-dimensional hyperplanes), then property P, (and
P,) do not hold, because the length of a description of the convex hull of a set of
s points in n dimensions (i.e., the length of the description of the MSC of a set of
points) can be as large as s3] (Edelsbrunner, 1987). If we are willing to relax the
requirement that the clustering found have size polynomial in the dimension, then
the agglomerative algorithm can be used to find an optimal clustering. The MSCs
are obtained by applying any algorithm for finding the convex hull of a set of points

in n dimensions. Alternatively, by using a different representation of the convex hull

15

(e.g., the extremal points), then properties P; - Pg will hold, and the agglomerative
algorithm may be used to find optimal clusters in time polynomial in the dimension

and the initial number of points.

Cluster Analysis Within our framework, any cluster analysis problem trivially satisfies
properties Py, P, and P,. Whether properties P3, Ps;, and Pg are satisfied will de-
pend on the particular choice of the objective functions. Single linkage clustering
(Anderberg, 1973), in which the distance between clusters (d, in our framework) is
the minimum distance between points in the clusters, clearly satisfies the monotone
requirement for distance metrics in property P;. Complete linkage clustering (d, is
the mazimum inter-point distance) clearly does not. Most reasonable choices of G will

satisfy property P.

4 The Agglomerative Algorithm

4.1 Algorithm A

The algorithm we consider is the Central Agglomerative Procedure as described by Anderberg
(1973). Variants of this method constitute the majority of the work on hierarchical cluster-
ing (Romesburg, 1984). Hierarchical clustering techniques are normally used to produce
a classification tree over the object set, where leaves are individual objects, and internal
nodes represent clusters. We will instead be concerned with whether the technique finds
a single clustering which is best under the objective function. In this sense, we are using
the agglomerative/hierarchical procedure as an optimization technique (Everitt, 1980), but
without fixing the number of clusters beforehand. We are also allowing the algorithm to
produce non-disjoint clusters (cf., clumping techniques (Everitt, 1980)).

Given n and a finite nonempty set S C X,,, the algorithm produces ¢t < |S| different
clusterings C1, C,...,C}, by starting with the maximally specific cluster for each point in
S and successively merging clusters with minimum distance until a single cluster covering
all of S is obtained. After each merge, extraneous clusters are eliminated. The output of
the algorithm is the clustering among C, Cs, ... C; with the best value. We will prove that
the algorithm solves any clustering problem (X,L,Z,7,D,G) that satisifes properties P
through Ps. (The algorithm itself implicitly assumes that properties Py, P, P3 part (a), and

16

P, hold.)
Agglomerative Algorithm A

INPUT(n, 5)
FOR each z; € S, compute ¢;, an MSC for {z;}
O™« {c;:z; € S}
C, + PRIME(n, C;*™, S)
IF |Cy| =1 THEN done < TRUE, ELSE done +— FALSE
1+ 1
WHILE done # TRUE DO BEGIN
14141
compute d,(cj, cx) for each ¢;, ¢, € Ciy
let ¢,c’ € C;_1 be such that D,(C;_1) = dn(c,¢)
(c and ¢’ are the two closest clusters of C;_;.)
CI™ « Ci_y — {c,d}U M(n,c,c')
(C{™ is C;_; with clusters ¢ and ¢’ merged.)
C; + PRIME(n, C;*™, S)
(eliminate any extraneous clusters.)
IF |Ci| = 1 THEN done + TRUE
END
t < 1 (index of final clustering formed)
OUTPUT any C € {C4,...C;} such that G,(C) is maximum.

Theorem 4.1 If (X,L,Z,7T,D,G) is any clustering problem such that properties P, through
P are satisfied, then A solves (X,L,Z,T,D,G) in polynomial time.

P is found in polynomial time. Note that

Proof: By property P,, the clustering Ci*™
d={d.}, D={D,}, T ={T.}, and G = {G,} are uniformly polynomial time computable
families (properties Ps, Ps, and Ps), and that the merge operation M never produces a
statement of length greater than g(n, |S|) (property Py parts (b) and (c)). Subroutine PRIME
runs in polynomial time by the comments following the introduction of property P;. Since

there are ¢t < |§| iterations (because |Ciy1| < |C;|), the algorithm runs in time polynomial

in |S| and n. We need only show that the algorithm is correct.

17

Lemma 4.2 Let (X,, Ln, In, Tn, Dn, Gn, S) be an instance of a clustering problem that sat-
isfies properties Py through Ps. Let C € K, be a prime clustering of S, a specialization of
some best clustering, and suppose that C itself is not a best clustering. Let c,c’ € C be such
that D, (C) = dn(c,c'), and let C' = C — {¢,d}U M(n,c,c'). (In other words, C' is obtained
from C by merging two clusters with minimum distance d,,.) Then C' is a specialization of

a best clustering, as is PRIME(n,C’, S).

We first show that Theorem 4.1 follows from Lemma 4.2, and then prove Lemma 4.2. To
prove the theorem, we need only show that at least one of the clusterings {C1,Cs,...,C:}
is a best clustering.

Suppose by way of contradiction that none of the C;’s is a best clustering. By the
definition of the maximally specific cover (MSC) of a set of points P, any cluster which
covers P must cover a superset of the points covered by the MSC. C+*™ consists of the
MSCs for each point in S. Thus, Ci*™ is a specialization of every clustering of S and
therefore of a best clustering. Trivially, C; is a specialization of a best clustering, and is a
prime clustering of S. By Lemma 4.2 (and the definition of C;em”), Ci™ is a specialization
of a best clustering, as is C,. Iteratively applying Lemma 4.2 and our supposition that
none of the C;’s are best, we have that each of C1,C5,...,C; is a specialization of a best
clustering. (Each is also a prime clustering of S.) But this is a contradiction, for C; cannot
be a specialization of a best clustering without being a best clustering: Since C; has only one
cluster, and only prime clusterings are candidate solutions, any generalization Cpe,; of C; must
have exactly one cluster that contains the single cluster of C;. Further, T5,(Chest) < Tn(Ct)
and D, (Cpest) < Dn(C:) by properties Ps and Ps part (b). By Ps, Gn(Chest) < Gn(Ct), and
thus C; is in fact a best clustering. It follows that our supposition was wrong, and at least
one of {C1,C,,...,C;} must be a best clustering. a

We now prove Lemma 4.2. Let Cpe,: be a best clustering, with C <,, Ciest, and C a prime
clustering of S, but not a best clustering. Then G,(C) < Gn(Crest)-

Let ¢,c, and C’ be as defined in the lemma. (Thus d,(c,c’) = D,(C).) Since C<,,Chest,
there are clusters b,b’ € Cheqt such that I,(c) C I,(b) and I,(c') C I,(b'). There are now two

cases:

Case 1: b=V
Then the only cluster of C' that is not also a cluster of C is M(n,¢c,c’). Observe

18

that I,(c) U I.(¢') C I.(b), and by the definition of M(n,e¢,c') as maximally specific,
L.(M(n,c,c')) C I,(b). Thus C'is a specialization of Cpes. Trivially, PRIME(n, C’, S)

is also a specialization of Ch.,, and the lemma is proved.

Case 2: b#£ 1V
In this case, T,,(C') > Tn(Chest) by property Ps, and now note that:
D,.(C) = du(c () (by choice of ¢, ¢')
> dn(b,b') (by property P; part (b))
> Dn(Chest) (by property Ps part (a)).
Since T,,(C) > Tp(Chest) and D, (C) > Dy (Chest), by property Ps, Go(C) > Gp(Chest),
contradicting the hypothesis of the lemma that C is not a best clustering. Thus case 1
must hold, completing the proof of Lemma 4.2 and Theorem 4.1. l

4.2 Properties of Algorithm A

It is interesting to note that algorithm A is not a hill-climbing algorithm, in that the value of
the objective function may increase and decrease as the sequence of clusters Cy,Cs,...,C;
is formed. (Recall the monomial example in Section 3.1.) It is true, however, that the
measure of tightness 7}, is monotone nonincreasing as each new clustering is examined. The
function D, is not necessarily monotone, because it is possible for D, to increase when
two clusters are merged (since the minimum distance is eliminated), and also to decrease
(since the new larger cluster may be very close to some other cluster). It is for this reason
that the algorithm must continue generating clusterings rather than stopping once the value
of G,, decreases. Under some objective functions, the algorithm may hill-climb. Single-
linkage cluster analysis problems (Anderberg, 1973), for example, define d,, as the minimum
“distance” between points of two clusters (where “distance” is any metric). If such a problem
satisfies properties P; - Pg, then the agglomerative algorithm will hill-climb on the objective
function.

It is also worth noting that algorithm A finds, for each k < s, the best clustering with at
least k clusters. We will show that for 1 < k < s, the best clustering with at least k clusters
is in the set {Cy, C,, ..., C;}. This is achieved by proving, for each fixed k < s, the following
variant of Lemma 4.2.

Let best; mean “best among all prime clusterings of S with at least k clusters”.

19

Lemma 4.3 Let (X,, Ln, In, Tn, Dn, Gn, S) be an instance of a clustering problem that sat-
isfies properties Py through Ps. Let C € K, be a prime clustering of S containing at least
k clusters. Further, let C be a specialization of some besty clustering, and suppose that
C itself is not a besty clustering. Let c¢,c’ € C be such that D,(C) = dn(c,c'), and let
C'=C—{c,d}UM(n,c,). (In other words, C' is obtained from C by merging two clus-
ters with minimum distance d,.) Then C' is a specialization of a best) clustering, as is

PRIME(n,C", S).

Lemma 4.3 differs from Lemma 4.2 only in that “best clustering” has been replaced with
“besty, clustering” and the additional hypothesis that C has at least k£ clusters has been
added. The proof of Lemma 4.3 is nearly identical to the proof of Lemma 4.2. (One needs
the fact that C has at least k clusters to arrive at the contradiction in Case 2.)

We can now prove

Theorem 4.4 If (X,L,Z,7,D,G) is any clustering problem such that properties P, through
Ps are satisfied, then for each k < |S|, the set of clusterings {C1,Cs,...,C:} produced by

algorithm A contains a besty clustering (if one exzists).

To prove Theorem 4.4, we assume that for some k < |S|, a best;, clustering exists (one
could fail to exist because every prime clustering could have fewer than k clusters), and
that none of the (prime) clusterings {C1,Cs,...,C:} is a besty clustering. We then obtain a
contradiction.

Consider the sequence of clusterings C+™?, Cy, Cs™?, Cs, . .., C{™, Cy, produced during

the run of algorithm A. Since C' = C;™ satisfies
(a) C has at least k clusters
(b) C is a specialization of a best, clustering,

there is a rightmost element R of this sequence of clusterings that satisfies (a) and (b). There

are 3 cases, each resulting in a contradiction:

Case 1: For some i, 1 <3 < t, R = C;. Then, since R is a prime clustering of S, by (a),
(b), our assumption that none of the C;’s is a best clustering, and Lemma 4.3, we

conclude that CfiTp 1s a specialization of a best; clustering. Then CfiTp must have

less than k clusters, otherwise R = C};1? instead of C;. Since C; and Cj;7? differ

20

in number of clusters by exactly one, it follows that C; has exactly k clusters. Let
Chest be a (prime) generalization of C; that is a best, clustering. Then Che, must have
ezactly k clusters, each a superset of a different cluster of C;. Thus T,,(C;) > Thn(Chest),
D, (C;) > Dyn(Chest), and Gpn(C;i) > Grn(Crest), contradicting the assumption that C; is

not a besty, clustering.

Case 2: R = (. Then since C; has exactly one cluster, £k = 1. In other words, C; has

exactly k clusters, and the reasoning concluding case 1 above may be employed.

Case 3: For some i, 1 <13 < t, R = CI*™. Since C;°™ is a specialization of some best,
clustering Chest, so 1s C;. Then C; must have less than & clusters, otherwise R = C;.
Both C; and Ci.,: are prime clusterings of S, so Ches; can have at most the same number
of clusters as C; (one superset of each ¢ € C;). Therefore, Cpest has less than k clusters,

and 1s not a besty clustering, a contradiction.

Since in each case we have arrived at a contradiction, our assumption that none of
the clusterings {C1,C, ..., C;} is a besty clustering must be false, completing the proof of
Theorem 4.4. O

A natural question is whether it is possible to find a best clustering with ezactly k
clusters. Certainly this is at least as difficult as finding a best clustering with at most
k clusters, since an algorithm for the former problem could be run %k times to find best
clusterings with exactly 1,2,3,...,k clusters, and the best could be chosen as an answer to
the latter problem. We show that there exists a clustering problem satisfying P; - Pg such
that unless P = NP, no polynomial time algorithm is guaranteed to find, for all instances
of the problem, a best clustering with at most k& clusters.

It would appear that a simple reduction from the NP-hard CLUSTERING problem
(Garey & Johnson, 1979) would be sufficient to show this. However, due to the definition of
what an “instance” of each problem is, a straightforward approach relating the “distance”
function of CLUSTERING to any of our measures 7, D, or G will not work.

We sketch a proof that there is a clustering problem (X,L,Z,7T,D,G) satisfying P
through Pg such that for each number & > 3, the problem of finding for all instances
(Xny Ln, In, Tn, Dy, G, S), a best clustering among those with at most k clusters, is NP-

hard. Our example is a cluster analysis problem, thus for each n, L, = {c : c is a finite

21

subset of X,,}, and I,, is the identity function. As in all cluster analysis problems within our
framework, properties P;, P;, and P, hold immediately.

Let k > 3 be given, and let X, 7, D, and G be as defined below:

X = {Xs,}, where X, is the set of (even) length 2v strings. A given string of length
2v will represent a vertex in an undirected graph of v vertices if the first half of the string
contains a single “1” bit . The single “1” among the first v bits indicates which vertex
it is, and the remaining v bits give adjacency information with other vertices, i.e., a “1”
in position v + 7 indicates that the vertex is adjacent to vertex j. Note that any graph
with v vertices may be represented by a finite set of points of Xs,, although not every
finite subset of X, represents a graph. For example, the graph of 5 vertices with edges
(1,2),(1,3),(1,5),(2,3),(4,5), (3,5) corresponds to the subset of X;o given by the elements
{z1, s, 3,24, z5} below: (a comma is inserted between the 5th and 6th bits, and each

element is parenthesized to aid the interpretation.)

10000,01101
01000, 10100

z; = () (vertex 1 adjacent to 2,3, and 5)
Ty = () (
z3 = (00100,11001) (vertex 3 adjacent to 1,2, and 5)
z4 = ()
z5 = ()

vertex 2 adjacent to 1 and 3)

= (00010, 00001
— (00001, 10110

vertex 4 adjacent to 5)

vertex 5 adjacent to 1,3, and 4)

Given as input any even number 2v and finite subset S of Xs,, it is decidable in polynomial
time whether S represents a subset of the vertices of some undirected graph of v vertices,
or whether no undirected graph has a subset of vertices represented by the elements of S.
(What must be checked is that (1) Each string of S has a single “1” among the first v bits;
(2) For each ¢ < v, there is at most one string in S with a single “1” in position Z; and
(3) If a string representing a vertex numbered ¢ has a “1” in position v + j, then the string
representing vertex j (if it appears in S) has a “1” in position v + 7.)

For a clustering C, Let T3,(C) = 0 if the union of the clusters of C is not a finite sub-
set of X5, representing a subset of the vertices of some undirected graph, OR if there is
a cluster ¢ € C such the representations of two vertices which are adjacent in the repre-

sented subgraph are both contained in ¢. Let T5,(C) = 1 otherwise. In the example above,

22

Tio({{z1,za}, {z2,25}}) = 1, since the elements of the clusters are consistent with some
5 vertex undirected graph, and no two adjacent vertices appear in any single cluster. On
the other hand, Tio({{z1,z2},{z3}}) = 0, since in any graph which contains the vertices
z1, T, and z3, ¢ is adjacent to ¢, and they appear in the same cluster. As a final example,
T10({{1001},{0100}}) = 0, because the adjacency information between vertex 1 and 2 in
the two vertex graph represented is inconsistent.

Let D,, be the constant function D,,(C) = 2v, and let G,,(C) = min(T5,(C), D2,(C)).

Now it is easily verified that the clustering problem (X, L,Z,T,D,G) satifies P3, P5s and
Ps. Since this is a cluster analysis problem, it also satisfies Py, P, and Pj.

We reduce the NP-hard graph k-colorability problem (Garey & Johnson, 1979) to the
problem of finding a best solution among all clusterings having at most k clusters for the
problem (X,L,Z,7,D,G). For each k > 3, the graph k-colorability problem is to determine
whether there is a coloring of the vertices of a graph using at most k colors, so that no two
adjacent vertices have the same color. Given a graph A = (V| E), with v vertices, we form
an instance (Xay, Loy, 2y, T2y, D2y, Gay, S) of the clustering problem above by letting the set
S C X,, to be clustered be exactly those elements of X5, which represent vertices V' of the
graph A with adjacency information given by E. A simple argument shows that the graph
A is k-colorable iff there is a clustering C for this instance with at most k clusters such that
G2,(C) = 1. (The clusters consist of representations of vertices to be colored with the same
color.) Otherwise, any clustering for this instance with at most k clusters has G,,(C) = 0.
It follows that for each k, any algorithm for solving (X,L£,Z,7,D,G) by finding the best
clustering with at most & clusters can be used to solve the graph k-colorability problem. We

have thus proved

Theorem 4.5 For all k > 3 there are clustering problems (X,L,Z,T,D,G) satisfying prop-
erties P, through Ps such that, unless P = NP, there does not exist a polynomial time

algorithm for finding a best clustering among all clusterings with at most k clusters for every

instance (Xn, Ln, In, Tn, Dpn, Gr, S).

4.3 Variants of T and D

Although Theorem 4.1 shows that only very general assumptions on the functions G are

needed, the results apply only when the functions 7 satisify property Ps, and the functions

23

D satisfy property P;. Measures of tightness such as “density” of individual clusters allow
the tightness to increase as a clustering is generalized, since “sparse” clusters may become
“dense” when new points are added. Thus property P;s is violated for this type of measure.
Similarly, if the distance functions {D,} are defined as the mazimum intercluster distance
d,., property P; is no longer satisfied. In this section we show that (assuming P # NP), P;
is necessary in the sense that properties P, Py, P3, P;, and Pg alone are not sufficient for a
clustering problem to be solvable in polynomial time. We conclude by observing that if the
functions {D,} are in fact the maximum intercluster distance, then the clustering problem

is trivial (assuming P; still holds).

Theorem 4.6 There is a clustering problem (X,L,Z,T,D,G) satisfying Py, Py, P3, Py, and

Pg that is not solvable in polynomial time unless P = NP.

Proof: We need only reduce INDEPENDENT SET, an N P-hard problem (Garey &
Johnson, 1979), to a cluster analysis problem satisfying properties Py and Ps. An instance
of INDEPENDENT SET is a graph A = (V, E), and a positive integer k < |V|. The problem
is to determine if A contains an independent set of size k or more, i.e., a subset V' C V such
that |V’| > k and such that no two vertices of V' are joined by an edge in E.

Let the clustering problem (X,L,Z,7T,D,G) be defined as in the proof of Theorem 4.5,
except that T3, has the modified definition given by: T5,(C) = 0 if the union of the clusters
in C is not a finite subset of X,, representing all of the vertices of some undirected graph
with v vertices, OR if there is a cluster ¢ € C such the representations of two vertices which
are adjacent in the represented graph are both contained in ¢. T5,(C) = the number of
elements in the largest cluster of C otherwise.

(X,L,Z,T,D,G) satisfies properties Py, Py, P3, P;, and Ps, since only the definition of 7
has been changed from the proof of Theorem 4.5, and property P; has been dropped. Also
note that for each C, D3, (C) = 2v > T5,(C), so G2,(C) = T5,(C). It is now easily shown
that a graph A has an independent set of size k iff the instance (Xay, Loy, T2y, T2y, D2y, G2, S),
with S representing the graph A, has a solution C' with G»,(C) = k. a

Finally, suppose that we modify part (a) of property Ps so that D, is now the mazimum
inter-cluster distance d,(c, ¢') among all clusters ¢, ¢’ € C, where d,, satisfies part (b) of prop-
erty P3. Then any clustering problem (X, L,Z,T,D,G) satisfying properties Py, Ps, Pg, and
this modified definition of Ps, is trivially solvable: The clustering given by C; in algorithm

24

A must be a best, since it is a specialization of every best clustering; tightness cannot in-
crease under generalization, nor can distance, by the modified property P;. Thus G, cannot

increase either.

5 Conclusion

The main results in this paper can be summarized as follows:

e The agglomerative algorithm will find a best (conceptual) clustering of a set of points
if the similarity measure (for clusterings) and the dissimilarity (between clusters) are
monotone with respect to generalization, the objective function is monotone with re-
spect to similarity and dissimilarity, and the language is tractable. Tractable in this
case means that the clusterings of the language are not too large, that it is possible to
efficiently determine whether a point is in a cluster, and that there exists and it is pos-
sible to find the most specific clustering in the language satisfying certain conditions.

The “identity” language for cluster analysis trivially has these properties.

e Under these same conditions, the agglomerative algorithm will find a best clustering
with at least k clusters for any fixed k less than the size of the sample set being

clustered.
e Finding the best clustering with at most k clusters is NP-hard under these conditions.

o If the measure of similarity is not monotone with respect to generalization, then find-
ing an optimal clustering is NP-hard, even if the other monotone properties and the

language properties are satisfied.

These results have several interesting implications. First, the agglomerative algorithm
is more widely applicable than would be expected from such a simple technique. Under
straightforward and intuitively natural conditions on the metric, the objective function, and
the cluster description language, it finds a best clustering in polynomial time. The language
restrictions are satisfied by conjunctive, attribute-based languages, including those using
internal disjunction. They also apply to several interesting geometric languages. They do
not hold for the existentially-quantified conjunctive predicate calculus statements sometimes

used to represent structured objects (Stepp, 1987a; Larson, 1977).

25

Finally, as would be expected, it seems that finding a best clustering with a given number
of clusters is hard. The implication is that clustering algorithms which try to find a best
clustering of a certain size will have to be content with sub-optimal results. It also confirms
the intuition that heuristic techniques and domain knowledge are probably necessary to
produce good solutions.

We would like to extend the results to metrics that, for example, include notions such
as density or average similarity over clusters. Additionally, it would be useful to be able to
weaken the restrictions on distance (for a clustering) so that it is not the minimum inter-
cluster distance.

A problem we have not addressed here is the notion of predictive clustering, along lines of
learnability as described by Valiant (1984), and Blumer, Ehrenfeucht, Haussler, & Warmuth
(1986). (See also (Kearns, Li, Pitt, & Valiant, 1987).) The idea is to develop a clustering
which is “good” for an entire space X (under an unspecified probability distribution), given
only randomly generated points from X. We have definitions that seem suitable for this
problem, and have some preliminary results indicating that this is a significantly harder

problem than nonpredictive clustering. These results may be presented in a future paper.

Acknowledgements

We are grateful to the referee for two thorough reviews and for simplifying the proof of The-
orem 4.1 while extending its scope. L. Pitt was supported by the Department of Computer
Science, University of Illinois at Urbana-Champaign, and R. E. Reinke was supported in
part by the National Science Foundation under grant NSF IST-85-11170 and in part by the
Office of Naval Research under grant N00014-82-K-0186.

References

Anderberg, M. (1973). Cluster Analysis for Applications. New York: Academic Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, A. (1986). Classifying learnable ge-
ometric concepts with the Vapnik-Chervonenkis dimension. Proceedings of the 18t
Annual ACM Symposium on Theory of Computation (pp 273-282). Berkeley, CA:

Association for Computing Machinery.

26

Carbonell, J.G., Michalski, R.S. & Mitchell, T.M. (1983). An Overview of Machine Learn-
ing. In R.S. Michalski, J.G. Carbonell & T.M. Mitchell (Eds.), Machine Learning: An
Artifical Intelligence Approach. Palo Alto, CA: Tioga.

Cohen, P.R. & Feigenbam, E.A. (Eds.). (1982). The Handbook of Artificial Intelligence, Los
Altos, CA: William Kaufmann.

Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York: John
Wiley & Sons.

Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry. W. Brauer, G. Rozen-
berg, A. Salomaa (Eds.), Monographs in Theoretical Computer Science (Vol. 10).
Heidelberg: Springer-Verlag.

Everitt, B. (1980). Cluster Analysis. London: Heinemann Educational Books.

Fisher, D. (1985). A Proposed Method of Conceptual Clustering for Structured and Decom-
posable Objects. Proceedings of the Third International Machine Learning Workshop
(pp. 38-40). Skytop, PA.

Fisher, D. (1987). Improving Inference Through Conceptual Clustering. Proceedings of the
Sizth National Conference on Artificial Intelligence (pp. 461-465). Seattle, WA: Mor-

gan Kaufmann.

Fisher, D. & Langley, P. (1985). Approaches to Conceptual Clustering. Proceedings of the
Ninth International Joint Conference on Artificial Intelligence (pp. 691-697). Los
Angeles, CA: Morgan Kaufmann.

Garey, M., & Johnson, D. (1979). Computers and intractability: a guide to the theory of
NP-completeness. San Francisco, CA: W. H. Freeman.

Hartigan, J. (1975). Cluster Algorithms. New York: John Wiley & Sons.

Kearns, M., Li, M., Pitt, L., & Valiant, L. G. (1987). Recent Results in Boolean Concept
Learning. Proceedings of the 4" International Machine Learning Workshop (pp. 337-
352). Irvine, CA: Morgan Kaufmann.

27

Larson, J. (1977). Inductive Inference in the Variable-Valued Predicate Logic System VL21:
Methodology and Computer Implementation. Ph.D. Thesis, Department of Computer

Science, University of Illinois, Urbana, Illinois.

Lebowitz, M. (1983). Generalization from Natural Language Text. Cognitive Science, 7,
1-40.

Michalski, R.S. (1980). Knowledge Acquisition Through Conceptual Clustering: A Theoret-
ical Framework and an Algorithm for Partitioning Data into Conjunctive Concepts.

International Journal of Policy Analysis and Information Systems, 4, 219-243.

Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning. In R. S. Michal-
ski, J. G. Carbonell & T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelli-
gence Approach, Palo Alto, CA: Tioga.

Michalski, R.S. & Stepp, R.E. (1983) Learning from Observation: Conceptual Clustering.
In R.S. Michalski, J.G. Carbonell & T.M. Mitchell (Eds.), Machine Learning: An
Artifical Intelligence Approach, Palo Alto, CA: Tioga.

Mogenson, B. (1987). Goal-Oriented Conceptual Clustering: The Classifying Attribute Ap-
proach. Master’s thesis, Department of Electrical and Computer Engineering, Univer-

sity of Illinois, Urbana, IL.

Rendell, L.A. (1983). Toward a Unified Approach for Conceptual Knowledge Acquisition.
ATl Magazine, 4, 19-27.

Romesburg, H. (1984). Cluster Analysis for Researchers, Belmont, CA: Lifetime Learning.

Stepp, R. (1984). Conjunctive Conceptual Clustering: A Methodology and Ezperimentation.
Ph.D. Thesis, Department of Computer Science, University of Illinois, Urbana, IL.

Stepp, R. (1987a). Machine Learning from Structured Objects. Proceedings of the 4** Inter-
national Machine Learning Workshop (pp. 353-363). Irvine, CA: Morgan Kaufmann.

Stepp, R. (1987b). Concepts in Conceptual Clustering. Proceedings of the Tenth Interna-
tional Joint Conference on Artificial Intelligence (pp. 211-213). Milan, Italy: Morgan

Kaufmann.

28

Stepp, R. & Michalski, R.S. (1986). Conceptual Clustering: Inventing Goal-Oriented Clas-
sifications of Structured Objects. In R.S. Michalski, J.G. Carbonell & T.M. Mitchell
(Eds.), Machine Learning: An Artifical Intelligence Approach (Vol. 2). Los Altos, CA:

Morgan Kaufmann.

Valiant, L. G. (1984). A theory of the learnable. Commumnications of the ACM, 27, 1134-
1142.

29

